当前位置: 6165.com > 现代文学 > 正文

数理化通俗演义: 第二十九回门缝里 牛顿玩弄三

时间:2019-12-12 22:03来源:现代文学
1672年2月6日,牛顿向皇家学会写了一封详细的信《光和颜色的新理论》,归纳了十三个命题。他指出:我们平常看见的白光不过是发光体发出的各种颜色光的混合。白光可以分解成从红

  1672年2月6日,牛顿向皇家学会写了一封详细的信《光和颜色的新理论》,归纳了十三个命题。他指出:我们平常看见的白光不过是发光体发出的各种颜色光的混合。白光可以分解成从红到紫的七色光谱。一切自然物体的颜色是因为它们对光的反射性能不同。对哪一种光反射的更多些,就是那种颜色。按这个理论,虹的问题解决了,它不过是白光让空中的水滴(相当于三棱镜)分成七色而已。物体的颜色不同不过是因为各自的反射性能不同。这又是一大发现。牛顿并因此而创立了光谱理论。后来恩格斯说:“牛顿由于进行光的分解,而创立了科学的光学。”

杨氏把他的新看法写信告诉了牛顿派的法国科学家阿拉果(Dominique Francois Jean Arago,1786-1853)。阿拉果早年遵循微粒说观点研究光学,认为光和热、电、磁一样,都是由无重量的微粒构成的流体,它们受物质分子的短程引力和斥力的作用,产生反射、折射、双折射等各种光学现象;对分子相同的物质,折射率将和密度成正比。

  歌德的研究进入另一个领域,他已经提出了视觉生理上的补色问题。我们看的实物突然从红的波段过渡到白的混合波段时,视神经系统不能一下适应,曾在中间绿波段上停一会儿。这正符合牛顿的光谱学说。但可惜牛顿的弟子们极力嘲笑歌德老头儿的非实验室研究。所以后人都同情这位诗人在科学上费力不讨好的遭遇。

菲涅耳在研究以太时发现,横向波的介质应该是一种类固体,而以太如果是一种固体,它又怎么能不干扰天体的自由运转呢。不久以后法国科学家泊松(Siméon Denis Poisson,1781~1840)也发现了一个问题:如果以太是一种类固体,在光的横向振动中必然要有纵向振动,这与新的光波学说相矛盾。

  牛顿这人在科学发现上算是运气不错,一个接一个,个个顺利。但好事多磨,他与别人的争论也一个接一个,个个难缠。从此,物理学上便开始了一场粒子说和波动说的大争论,一争就是一个世纪。

新的波动学说牢固的建立起来了,微粒说开始转向劣势。

  前面说过,牛顿在剑桥大学有一位恩师叫巴罗,他们生尊师爱,情同鱼水,结下了忘年之交。这巴罗几日不见牛顿出来走动,一天使到房里来找牛顿。他见门虚掩湝,屋里静悄悄的不像有人,便推门而进。不想一头正撞在一个人身上。巴罗刚从阳光下走进这间暗屋里,他一时看不清是谁,只听有人喊了他一声“老师”,将他扶住,又一把扯下窗户上的床单-原来是牛顿。巴罗说:“你又在搞甚么名堂,几天不露面,我还以为你病了呢。”牛顿却笑嘻嘻地如此这般说了一遍。巴罗也大为惊喜,连声埋怨他何不早说。第二天,他就给牛顿又弄来一块三棱镜,布置起一个真正的暗室。他们先让一束光穿过一个黑色木板上的小孔,用三棱镜将它分成七条不同的彩色光,再用一个有孔的木板挡住分解后的光,让每条单色光逐一从孔里通过,木板后再放一个三棱镜。这时新的发现出现在粉墙上:一是这单色光通过三棱镜时不会再分解,二是各色光束经过三棱镜时折射的角度不同。凭着数学天才和实践才能,牛顿很快就计算出红、绿、蓝三色光的折射指数。这一实验不久,1669年底牛顿便接替巴罗老师,开始在剑桥大学向学生们开设光学课了。可惜学生们听不大懂他在讲些甚么。

面对这种情况,杨氏对光学再次进行了深入的研究,1817年,他放弃了惠更斯的光是一种纵波的说法,提出了光是一种横波的假说,比较成功的解释了光的偏振现象。吸收了一些牛顿派的看法之后,他又建立了新的波动说理论。

  有一天,我走进一个小旅馆的房间里,一个美艳的少女向我走来。她的脸色洁白而有光泽,头发乌黑,身上穿一件绯红色的紧身衣裙。当她在距我稍远的地段站定时,我在微暗的黄昏光线下对她注视了一会。她离开时,我在对面的白色墙上,看到一个被发亮的光晕包围着的黑色脸庞。那件裹着极其苗条体型的衣裙,竟是美丽的海水绿色。

意大利著名美术家、科学家列奥纳多·达·芬奇(Leonardo da Vinci,1452-1519)以博学多才著称,他在光学、力学、数学和解剖学等方面都有不少创见或发明。他描述了光是如何通过不同表面反射的,眼睛是如何感觉反射并判断距离的,人类的眼睛是如何接受透视的,以及光投射在物体上是如何产生阴影的。

  1666年,牛顿还在剑桥大学当穷学生时,他脑海里就翻腾过这个颜色问题。说来真巧,他在乡下,因看到苹果落地发现万有引力,回到学校,却又因看到门缝里的光而解决了光学中的颜色问题。那是个假日,同学们都去郊游,刻苦的牛顿却将自己锁在房中,推演着那引力的公式。不觉日已当午,他饥肠辘辘,便推开稿纸,抬起头来伸个懒腰,这一抬头不要紧,只见紧闭的门缝里露进一缕细细的阳光,在幽暗的房间里显得格外明亮。他不由自语道:“从来没有见过这样细的光丝,不知可否将它再分成几缕?”这来想有,他便伸手从抽屉里摸出一块三棱镜,迎上去截住那丝细光,然后又回过头去看这光落在墙上的影子。这一看不要紧,那墙上竟出现一段红、橙、黄、绿、青、蓝、紫的彩色光带。他将镜子转转,光带不变,再前后移动,终于选出一个最佳点,这一下天上的彩虹便清楚地出现在他的肩里。他捏,三棱镜就像抓住了那条巨龙的尾巴,任他细看细想。从这天起,牛顿一有空,就把自己关在房子里,还把门窗都用床单遮严,放一道光进来,做着这种玩三棱镜的游戏。他已经悄悄地领悟到一个秘密:我们平时看到的白光,其实不是一色白,它是由许多光混合成的。但是那各个单色又是甚么呢?它们之间靠甚么区别成不同颜色呢?按道理应将那单色光再分一次,但这还得要一块三棱镜,还得有暗室设备,他这个穷学生是办不到的。

古希腊天文学家、地理学家和光学家托勒密(Clandius Ptolemaeus,约90~168)最早做了光的折射实验。托勒密在他的最后一本重要著作《光学》中提出和说明了各种基本原理,他依靠经验发现了折射的规律,绘出了光线以各种入射角从光疏媒介进入水的折射表,但没有由此得出精确的折射定律。

  正是:

1813年起阿拉果对微粒说的信仰发生了动摇,他参与测定了许多液体和固体折射率,发现根本不存在微粒说所述的和密度成正比的关系;此外,他还认识到杨氏1801年的干涉理论能更好地解释色偏振等实验事实。

  到底结果如何,且听下面慢慢分解。

1924年,奥地利物理学家泡利(Wolfgang Ernst Pauli,1900~1958)发表了“不相容原理”:原子中不可能有两个或两个以上的电子处于同一量子态.这一原理使当时许多有关原子结构的问题得以圆满解决,对所有实体物质的基本粒子(通常称之为费米子,如质子、中子、夸克等)都适用,构成了量子统计力学——费米统计的基点。

  公说公有理,婆说婆有理。 是波是粒子,难分高和低。

1814年,德国天文学家夫琅和费(Joseph Von Fraunhofer,1787~1826)在重复做牛顿分解太阳光的实验时,在一间小黑屋子的窗板上开了一条狭缝,让太阳光通过这条缝射入屋子里,成为一条扁扁的光束,再让光束经过三棱镜,变成了宽大的扇形落到对面的白墙上,成为从红到紫的光带,他意外地发现了太阳光谱中的一些重要现象。1821年夫琅和费在波动学说的基础上导出了从衍射图形求波长的关系式。

  上回说到牛顿发现万有引力定律,出版了《自然哲学的数学原理》一书,这实在是物理学上的一件大事。殊不知这牛顿浑身才华,犹如大坝水满,渠水四溢,这智慧之水又从光学处冲开一个决口,奔涌而出。

德国科学家爱因斯坦(Albert Einstein,1879-1955)坚信宇宙中一切物理现象的背后都蕴藏着完整的统一性,因此,麦克斯韦的电磁学理论必须要与经典力学统一起来。爱因斯坦为了解决这一矛盾,做出了一个假设:假设有个人能够达到光的速度,与光并肩齐行,那么他就会发现静止的光。但是,根据麦克斯韦的电磁学原理,振动的电磁波是不可能观测到的,而且波也不可能处于静止状态,也就是说,宇宙中不可能存在光在静止状态的参照系,对于任何一个参照系来说,都只有属于这个参照系的时间与空间。因此,爱因斯坦确信,光在所有参照系中速度必然相同。根据这一物理法则,爱因斯坦进行了多年的探索和研究,1905年创立了狭义相对论,揭示了时间和空间的本质联系,引起了物理学基本概念的重大变革,开创了物理学的新世纪;提出了光量子论,解释了光电现象,揭示了微观客体的波粒二重性,用分子运动论解决布朗运动问题;发现了质能之间的相当性,在理论上为原子能的释放和应用开辟道路。爱因斯坦的相对论与麦克斯韦的电磁学理论完美地结合在一起,从而推动了物理学上的一次意义深远的重大革命。

  说到颜色,各位读者,容我这里插上一笔。这个问题在当时,从十七至十九世纪的一、二百年间实在是一个难题,也是一个热门题。比牛顿晚一些的还有一位大名鼎鼎的人物-德国诗人歌德,他以诗人的气质,到处靠眼睛去观察各种颜色。冬季爬上阴森寒冷的山顶,看落日熔金,积雪变红;黄昏走进小铁铺,看铁匠的大锤下金黄的火星炸开和渐渐里拢来的夜幕。他像一个猎人到处猎取各种颜色奇观,分析各种颜色现象。甚至见了脸白唇红的少女也要盯住研究一番,使人奇怪这个快60岁的老头儿是否正常。在他的《色彩学》里就有这样一节记载:

战国初期伟大的思想家 、政治家,也是一位有卓越贡献的自然科学家墨子(生于公元前480-476年左右,卒于公元前420-390年左右)是墨家学派的创始人。墨家学派著作的总汇是《墨子》,其主要组成部分是《墨经》,这是一部内容丰富、结构严谨的科学著作。《墨经》中记载了丰富的几何光学知识。墨子和他的学生做了世界上最早的“小孔成像”实验,并对实验结果作出了光沿直线传播的科学解释,并用此原理解释了物体和投影的关系。

  这段插曲说过,还说牛顿向皇家学会送上的那封信后。皇家学会立即成立了一个专门评议委员会来评议这个新理论的价值。真是冤家路窄;这个委员会主席,又是在学术上与牛顿不和的胡克。虹的现象,颜色现象,就算牛顿说清楚了,但光本身,不管红光还是绿光,本质又是甚么?牛顿也有他的看法,说光就是一些高速运动的粒子,它能按直线前进,碰到物体过不去,就投下了影子;镜子能反射光,是因为那些小粒子碰到镜面就弹了回来。但是胡克却很干脆地否定了牛顿的微粒说,而提出振动说,就是连白光中包括了其它颜色这一点胡克也不承认。他们两人的怨恨越结越大。牛顿想:你不承认我的微粒说,由你去吧,反正我是对的。他这样安慰着自己,也就不再去生这份闲气。但没过多久,一条爆炸性消息又使他大为吃惊。1678年荷兰人惠更斯又提出一个“波动说”。这个惠更斯斯实厉害,但他不像胡克那样蛮横,却以冷静的分析卡住了牛顿微粒说的咽喉:你不是说光是小粒子吗?那么两束光交叉时,那些小粒子为甚么互不干扰?而波动说却能解释:因为波是不会相互干扰的,我们常见的水面上两个波就可以交叉通过。胡克等人也觉得这下子可惜来了生力军,高兴得忘乎所以。牛顿急忙起而申辩:你们说光是波,那为甚么它不能像水波那样绕开障碍物前进呢?胡克又来驳难:你说光都是一样的粒子,为甚么不同颜色的光在同一物体中却有不同的折射角度呢?

法国物理学家德布罗意(Louis Victor due de Broglie, 1892-1987)由光的波动和粒子两重性得到启发,他大胆地把这两重性推广到物质客体上去。他在1923年9~10月间,连续发表三篇短文:《辐射——波和量子》、《光学——光量子、衍射和干涉》、《物理学——量子、气体动理论及费马原理》。1924年,在他的博士论文《量子论研究》中,他全面论述了物质波理论,这一理论以后为薛定愕接受而导致了波动力学的建立。德布罗意把爱因斯坦关于光的波粒二象性的思想加以扩展。他认为实物粒子如电子也具有物质周期过程的频率,伴随物体的运动也有由相位来定义的相波即德布罗意波,后来薛定愕解释波函数的物理意义时称为“物质波”。德布罗意在并无实验证据的条件下提出的新理论在物理学界掀起了轩然大波。

  原来,在颜色问题上,千百年来一直有一个难解的谜。那太阳光谁看也说是白的,可不知怎么雨后的天空会突然出现一条七色彩虹。于是众说纷纭,有说这是一条长龙弯身下海吸水;有言这是一座彩桥,仙人踏空而过;有那刚登王位的,就说这是吉兆,上天呈祥;有那宝座不稳的,就疑是江山气数已尽,终日惶惶。反正谁也说不清。中国古代已注意到虹是阳光与水珠的变幻。甲骨文里虹是“日”加“水”,唐代张志和的《玄员子》中记载:“昔日喷乎,水成虹霓之状。”端一碗水背向太阳一喷,眼前竟也能现出一条多彩小练。但这喷出的霓,伸手抓是一把湿气,想多看一会儿又瞬间即逝,既不能抓在手里玩,更不能用力将它剖开,终还是弄不清这颜色是怎么来的。至于平时红的花,绿的叶,五颜六色的杂物,人们更不知到底是怎么回事。前面提到的那个法国数学家笛卡儿说:颜色是许多小粒子在转,转速不同,颜色也就不同。化学家波义耳说:光是有许多极小粒子向我们的眼睛视网膜上撞,撞的速度不同,看到的颜色也就不同。反正,为解这个谜有不少人都想来试一试,而运气最好的,还是牛顿。

美国物理学家康普顿(Arthur Holly Compton,1892~1962)1921年在实验中证明了X射线的粒子性。1923年他发表了X射线被电子散射所引起的频率变小现象,即康普顿效应,这是近代物理学的一大发现。按经典波动理论,静止物体对波的散射不会改变频率。而按爱因斯坦光量子说这是两个“粒子”碰撞的结果。光量子在碰撞时不仅将能量传递而且也将动量传递给了电子,它进一步证实了爱因斯坦的光子理论,揭示出光的二象性。

1926年,奥地利理论物理学家薛定愕(Erwin Schrodinger,1887~1961)提出了描述物质波连续时空演化的偏微分方程——薛定愕方程,给出了量子论的另一个数学描述——波动力学。后来,物理学家把二者将矩阵力学与波动力学统一起来,统称量子力学。

十七世纪中期,物理光学有了进一步的发展。1655年,意大利数学家格里马第(Francesco Maria Grimaldi,1618-1663)在实验中让一束光穿过两个小孔后照到暗室里的屏幕上,他发现在投影的边缘有一种明暗条纹的图像,马上联想起了水波的衍射,于是格里马第提出:光可能是一种类似水波的波动,这就是最早的光波动说。格里马第认为,物体颜色的不同,是因为照射在物体上的光波频率的不同引起的。

1927年,美国贝尔实验室的戴维森(Clinton Joseph Davisson,1881~1958)、革未(Lester Halbert Germer,1896~1971)及英国的汤姆逊(George Paget Thomson,1892~1975)通过电子衍射实验,都证实了电子确实具有波动性。至此,德布罗意的理论作为大胆假设而成功的例子获得了普遍的赞赏。以后,人们通过实验又观察到原子、分子……等微观粒子都具有波动性。实验证明了物质具有波粒二象性,不仅使人们认识到德布罗意的物质波理论是正确的,而且为物质波理论奠定了坚实基础。

荷兰数学家威里布里德.斯涅耳(Willebrord Snell Van Roijen 1591-1626)在总结托勒密、开普勒等前人的研究成果后做了进一步的实验。1621年,斯涅耳在实验中注意到了水中的物体看起来象漂浮的现象,由此引出了他对折射现象的研究,并发现了光的折射定律,也称斯涅耳定律,但当时未做任何理论推导,虽然正确,却未正式公布。

德国物理学家普朗克(Max Karl Ernst Ludwig Planck,1858-1947)早期从事热力学的研究,他的博士论文就是《论热力学的第二定律》。1900年,普朗克为了克服经典物理学对黑体辐射现象解释上的困难,创立了物质辐射的能量只能是某一最小能量单位的整数倍的假说,即量子假说。他引进了一个物理普适常数,即普朗克常数,以符号h表示,其数值为6.626176×10-27尔格·秒,是微观现象量子特性的表征。他从理论上导出了黑体辐射的能量按波长分布的公式,称为普朗克公式。量子假说的提出对现代物理学,特别是量子论的发展起了重大的作用。普朗克在做了大量的实验后又提出了电磁波这种形式的能量辐射,使人们认识到电磁波是某种粒子,既光量子。为了强调光的粒子属性,光量子被称之为“光子”。光子的质量在运动中显示出来。

英国科学家罗吉尔·培根(Roger Bacon,1214-1292)在物理学方面,特别是对于光学的研究极为深刻,他通过实验研究了凸透镜的放大效果以及光的反向和折射规律,证明了虹是太阳光照射空气中的水珠而形成的自然现象。

1809年,法国物理学家及军事工程师马吕斯(Etienne Louis Malus,1775-1812)在试验中发现了光的偏振现象。在进一步研究光的简单折射中的偏振时,他发现光在折射时是部分偏振的。因为惠更斯曾提出过光是一种纵波,而纵波不可能发生这样的偏振,这一发现成为了反对波动说的有利证据。

1811年,苏格兰物理学家布儒斯特(David Brewster,1781-1868)在研究光的偏振现象时发现了光的偏振现象的经验定律。

杨氏的理论激起了牛顿学派对光学研究的兴趣。

1887年,德国科学家赫兹(Heinrich Rudolf Hertz,1857-1894)用实验证实了电磁波的存在,也证实了光其实是电磁波的一种,两者具有共同的波的特性。赫兹在实验中同时也证实了光电效应,即在光的照射下物体会释放出电子,这一发现,后来成了爱因斯坦建立光量子理论的基础。

编辑:现代文学 本文来源:数理化通俗演义: 第二十九回门缝里 牛顿玩弄三

关键词: